MicroRNA-22 regulates cardiac hypertrophy and remodeling in response to stress.
نویسندگان
چکیده
RATIONALE The adult heart is composed primarily of terminally differentiated, mature cardiomyocytes that express signature genes related to contraction. In response to mechanical or pathological stress, the heart undergoes hypertrophic growth, a process defined as an increase in cardiomyocyte cell size without an increase in cell number. However, the molecular mechanism of cardiac hypertrophy is not fully understood. OBJECTIVE To identify and characterize microRNAs that regulate cardiac hypertrophy and remodeling. METHODS AND RESULTS Screening for muscle-expressed microRNAs that are dynamically regulated during muscle differentiation and hypertrophy identified microRNA-22 (miR-22) as a cardiac- and skeletal muscle-enriched microRNA that is upregulated during myocyte differentiation and cardiomyocyte hypertrophy. Overexpression of miR-22 was sufficient to induce cardiomyocyte hypertrophy. We generated mouse models with global and cardiac-specific miR-22 deletion, and we found that cardiac miR-22 was essential for hypertrophic cardiac growth in response to stress. miR-22-null hearts blunted cardiac hypertrophy and cardiac remodeling in response to 2 independent stressors: isoproterenol infusion and an activated calcineurin transgene. Loss of miR-22 sensitized mice to the development of dilated cardiomyopathy under stress conditions. We identified Sirt1 and Hdac4 as miR-22 targets in the heart. CONCLUSIONS Our studies uncover miR-22 as a critical regulator of cardiomyocyte hypertrophy and cardiac remodeling.
منابع مشابه
Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice.
MicroRNAs inhibit mRNA translation or promote mRNA degradation by binding complementary sequences in 3' untranslated regions of target mRNAs. MicroRNA-21 (miR-21) is upregulated in response to cardiac stress, and its inhibition by a cholesterol-modified antagomir has been reported to prevent cardiac hypertrophy and fibrosis in rodents in response to pressure overload. In contrast, we have shown...
متن کاملLoss of MicroRNA-155 protects the heart from pathological cardiac hypertrophy.
RATIONALE In response to mechanical and pathological stress, adult mammalian hearts often undergo mal-remodeling, a process commonly characterized as pathological hypertrophy, which is associated with upregulation of fetal genes, increased fibrosis, and reduction of cardiac dysfunction. The molecular pathways that regulate this process are not fully understood. OBJECTIVE To explore the functi...
متن کاملFully integrated whole-body [18F]-fludeoxyglucose positron emission tomography/magnetic resonance imaging in therapy monitoring of giant cell arteritis.
Hill JA, Olson EN. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci USA 2008;105:13027–13032. 20. Li J, Donath S, Li Y, Qin D, Prabhakar BS, Li P. miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway. PLoS Genet 2010;6:e1000795. 21. Karakikes I, Chaanine AH, Kang S, Mukete BN...
متن کاملControl of stress-dependent cardiac growth and gene expression by a microRNA.
The heart responds to diverse forms of stress by hypertrophic growth accompanied by fibrosis and eventual diminution of contractility, which results from down-regulation of alpha-myosin heavy chain (alphaMHC) and up-regulation of betaMHC, the primary contractile proteins of the heart. We found that a cardiac-specific microRNA (miR-208) encoded by an intron of the alphaMHC gene is required for c...
متن کاملتأثیر هشت هفته تمرین تناوبی خیلی شدید بر بیان ژن خانواده miR-29 و هایپرتروفی عضلهی قلبی رتهای نر سالم
Background and Objective: In this study the effect of high intensity interval training on miR-29 expression that is expressed in the heart and in the regulation of physiological processes, including extracellular matrix and cardiac hypertrophy of healthy male rats were examined. Materials and Methods: 16 Wistar rats were divided into training (n=8) and control (n=8) groups. After one week of fa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 112 9 شماره
صفحات -
تاریخ انتشار 2013